The Wiretapped Diamond-Relay Channel

نویسندگان

  • Si-Hyeon Lee
  • Ashish Khisti
چکیده

In this paper, we study a diamond-relay channel where the source is connected to M relays through orthogonal links and the relays transmit to the destination over a wireless multiple-access channel in the presence of an eavesdropper. The eavesdropper not only observes the relay transmissions through another multiple-access channel, but also observes a certain number of source-relay links. The legitimate terminals know neither the eavesdropper’s channel state information nor the location of source-relay links revealed to the eavesdropper except the total number of such links. For this wiretapped diamond-relay channel, we establish the optimal secure degrees of freedom. In the achievability part, our proposed scheme uses the source-relay links to transmit a judiciously constructed combination of message symbols, artificial noise symbols as well as fictitious message symbols associated with secure network coding. The relays use a combination of beamforming and interference alignment in their transmission scheme. For the converse part, we take a genie-aided approach assuming that the location of wiretapped links is known.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Achievable Rate-Regions for the Gaussian Two-way Diamond Channels

In this channel,we study rate region of a Gaussian two-way diamond channel which operates in half-duplex mode. In this channel, two transceiver (TR) nodes exchange their messages with the help of two relay nodes. We consider a special case of the Gaussian two-way diamond channels which is called Compute-and-Forward Multiple Access Channel (CF-MAC). In the CF-MAC, the TR nodes transmit their mes...

متن کامل

Bounds for Multiple-Access Relay Channels with Feedback via Two-way Relay Channel

In this study, we introduce a new two-way relay channel and obtain an inner bound and an outer bound for the discrete and memoryless multiple access relay channels with receiver-source feedback via two-way relay channel in which end nodes exchange signals by a relay node. And we extend these results to the Gaussian case. By numerical computing, we show that our inner bound is the same with o...

متن کامل

Interaction and Secrecy in Gaussian Diamond Relay Networks

Interaction and Secrecy in Gaussian Diamond Relay Networks Wanyao Zhao Master of Applied Science Graduate Department of Electrical and Computer Engineering University of Toronto 2015 In this thesis, the physical layer secrecy for several Gaussian network models are studied. We first establish the secure degrees of freedom (d.o.f.) of helper-assisted Gaussian wiretap channel with shared keys bet...

متن کامل

Outage Probability Bound and Diversity Gain for Ultra-Wideband Multiple-Access Relay Channels with Correlated Noises

In this paper, Ultra-wideband (UWB) multiple access relay channel with correlated noises at the relay and receiver is investigated. We obtain outer and inner bounds for the IEEE 802.15.3a UWB multiple access relay channel, and also, a diversity gain bound. Finally, we evaluate some results numerically and show that noise correlation coefficients play important role in determining relay position.

متن کامل

On the Capacity of the Diamond Half-Duplex Relay Channel

We consider a diamond-shaped dual-hop communication system consisting a source, two parallel half-duplex relays and a destination. In a single antenna configuration, it has been previously shown that a two-phase node-scheduling algorithm, along with the decode and forward strategy can achieve the capacity of the diamond channel for a certain symmetric channel gains [1]. In this paper, we obtain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1606.05954  شماره 

صفحات  -

تاریخ انتشار 2016